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PART A

GENERAL DISCUSSION

INTRODUCTION .

This is the sixth quarterly report submitted in accordance
with the provisions of Contract No. 950670, "Investigation of
Optimization of Attitude Control Systems." It covers the period
September 15, 1965 through December 31, 1965.

This report is in three parts. The first part summarizes the
progress during the reporting period. The technical discussions
are given in Parts B and C, in which the plans &f future work are

also included.

PROGRESS DURING REPORTING PERIOD

2.1 Coordination Meetings

A series of meetings were held at Purdue University on Octaber 26,
1965. Those present at all the meetings included:

J. C. Nickles, and A. E. Cherniack of Jet Propulsion Laboratory,
and J. Y. 5. Luh of Purdue University. J. C. Hancock, D. R. Anderson,
T. J. Williams, G. E. O'Connor, and J. S. Shafran of Purdue University
were present at some of the meetings.

The discussions brought out the following:

(2) Both J.P.L. and Purdue should seek the research areas which

are of interest to both parties. Tentatively, three pos-
sible research areas were discussed; viz., antenna pointing,

sensitive analysis, and soft landing problems.
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(b) The third (also the last) annual report is due on or
before July 30, 1967. The research fund for the third

year period, however, is not guaranteed.

2.2 Technical Progress

In connection with the soft landing problems, an optimal
control problem in bounded phase-coordinate and bounded control
processes was studied. The general theory for a linear autonomous
system was developed. Based on the theory, a method of determining
the optimal control was derived. The complete technical discussion
together with the future research plan‘is presented in Part B.

This method was then applied successfully to the "time-optimal
control of an unstable booster with actuator position and rate
limits." The solution in detail is also included in Part B. The
resulis, when evaluated with numerical data, are in agreement with
those obtained by Friedland t20] and Tookey [21] who solved the ‘
problem by other methods including computer simulation.

The control problem of antenna pointing was also investigated.
The problem was formulated as a stochastic optimal control problem
in which the probability that the antenna pointing at the desired
direction within an allowable tolerance is maximized. This scheme,
when fully developed, has a potential application to the programmed
pointing system to improve its accuracy. The technical discussion
and the plan of future work are given in Part C.

The theoretical investigation of the sensitivity analysis was

Jjust begun. No significant results were achieved up to date and
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hence no detailed discussion will be presented in this report.

The method of approach follows the idea given in the First Annual
Report submitted to JPL in January 1965, pp. 79-87. Instead of
using specific physical plants (such as the two plants chosen in

that report), a general plant model is utilized. The control,
however, will be limited to the simple linear feed-back type and pos-
sibly with an additional cubic term. The choice of such simple form
of control function is motivated by the requirement of hardware

simplicity.

PROFESSIONAL CONTRIBUTORS

Professional personnel contributing to progress during the
reporting period are as follows:
J. Y. S. Luh, Principal Investigator
G. E. O'Connor, Staff Researcher

J. S. Shafran, Staff Researcher



-5-

PART B

OPTIMAL CONTROL IN BOUNDED PHASE-COORDINATE PROCESS

INTRODUCTION

Bounded phase-coordinate control problems arise naturally in
many practical applications. The non-crush landing of a spacecraft
is a trivial example. In many flight vehicles, engine deflection,
angle of attack and bending moment contribute to the phase-coordinate
constraints. For instance, if the controller input is engine gimbal
rate, the engine displacement may be considered as a phase-coordinate of the
dynamical system. Normally, the allowable engine displacements are
small; an efficlent use of the available control input often demands
operating on the engine displacement limit. Unfortunately, such
intuwition is not always correct. The efficient use of the control
input implies not only operating at the displacement 1imit, but also
considering the displacement limit explicitly in the over-all design
of the controller. The term "efficient use" can be specifically defined
by a given minimization criterion, and problems of this type are called
optimal control problems with phase-coordinate inequality constraints.

At the present time, available methods of solving this type of
problem are time consuming, thus preventing the possibility of on-line
operation using currently available facilities. This research will
attempt to determine the optimal control as an explicit time function
and thereby eliminate the difficulty of excessive computing time.

In the following sections, a discussion on the research problem

is presentéd. Section 2 gives a brief survey on the known results for
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the bounded phase-coordinate control problems. It also motivates
the problem for thislresearch. Section 3 defines the problem that
is under investigation. Section 4 discusses the method of solving
the problem. In this Section 4, a summary is made for the géneral
theory that is already known. Based on an analysis of the known
theory, the problem is reformulated in such a manner as to lead to
a method that determines the optimal controls as explicit time
functions. This method is then applied fo the time-optimal control
of an unstable booster. A brief summary of the final results for
this particular example is then presented. The derivations and
discussions are given in detail in the Appendix. Section 5 outlines

the plan of future work in a logical and sequential order.



2.  HISTORICAL DEVELOPMENT

In recent years, considerablevattention has been given to optimizing
systems for which the state variebles are bounded. The problem is not really
new. As indicated by Bolza [1, pp. 125-126], Welerstrass formulated the
analogous problems of calculus of variations with phase-coordinate inequality
constraints in 1882, and developéd the "corner" conditions for the two-dimensional
Lagrange problems. The "corner" conditions deal with the discontinuities of
the solution of the analogous problems. According to Bliss [2, pp. 43], the
necessary and sufficlent conditions for & minimum solution were studied sub-
sequently by Carathéodory, Bolza, Dresden, Graves, Reid, Smiley, Bliss, and
Underhill. Most of the studies were completed between 1904 and 1937.

In 1961, Berkovitz [3] reduced the general control problem with constraints
to a problem of calculus of variations. In his discussion, & translation of
necessary conditions for the problem of calculus of variations into the necessary
conditions for the optimal control was established, including the application of
Pontryegin's meximum principle [4]. His results, however, are not applicable
to control problems with phase-coordinste inequality constraints that do not
explicitly involve the control variable. In an independent study, Gemkrelidze
[5, also Chapter VI of 4] treated the latter problem based entirely on the maximum
principle. Berkovitz [6] then showed that Gamkrelidze's results could be
achieved by solving the relevant problem of calculus of variations. Dreyfus
[7]) studied the same problem by means of the dynamic programming formulation.

His results are in agreement with that of Berkovitz [8]. Among all the studies,
sufficiency conditions were virtuaslly ignored. For practical applications,
even when solutions do exist, the necessary conditions derived by various
authors are difficult to apply.

During 1961-1962, Cheng derived a simpler necessary condition for & more



restricted class of problems- [9], and existence theorems based on the extension
of Ascoli's Theorem [10]. For lineer time-optimal control systems with a convex
restraint set, the neceésary condition is also the sufficlent condition. An
elegent proof of the necessity of the condition can be reduced from Neustadt's
recent work [11] while & rigorous proof of thesufficiency is given by Russell
{12, pp.26-30]. This condition is an improvement on Gemkrelidze's results. It
establishes the fact that the normal vector appearing in the modified adjoint
differential equation is always outward with respect to the set of attainability,
and hence the necessary and sufficlent condition is relatively easy to apply.

As to the computational aspects of the problem, there are essentially two
classes of methods. One cless is the direct method which includes the method
of the gradient, steepest-descent or their equivalent. The direct method was
studied by Dreyfus (7], Denham [13, 14] and Bryson [15] using the necessary
conditions of the optimal control, and by Palewonsky, et al. [16] using
condltions both of the optimal control and fram the calculus of variations.

The other class 1s the indirect method which was discussed by Kahne [17], Ho
and Brentani [18], and Nagata, et al. [19]. Because of the nature of the
problem, each computational procedure requires either an iterative solution
or a simulation on a sizable computer. Since a new combutation is required
for each different initiel state, the possibility of on-line operation using
currently avalleble facllities is out of the question.

An ideal epproach 18 to synthesize & so-called closed-loop optimal control-
ler such that the control input is a function of the current state. This problem,
however, is too difficult to solve. An alternative approach is to obtain the
so~called dpen-loop optimal control as an explicit tiﬁe function for“eacﬁ |
initial state. This problem, although not so difficult as the closed-loop
oﬁéiﬁhl control problem, is complicated enough th;t no publishéd results

are kmown. In this research, we shall attempt to develop a new method
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t0 solve the optimal control problem with & bounded phase-coordinate. The
mein effort will be devoted to deriving an algorithm for expressing the open-
loop control law as & time fﬁnction. Once this goel is achieved; the closed-

loop control lew will then be attempted.
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PROBLEM STATEMENT

The general problem of interest is stated as follows: Given a

linear control process as described by the differential system
x = A(t) x + B(t) u(t) (1)

where x and u(t) are the.n-dimensional state vector and m-dimensional
control vector, respectively; A(t) and B(t) are n by n and n by m
matrices of measurable functions for t in same interval [to, tl]. Let
G be a closed convex subset of En, and (Q be a compact convex subset

of E®. Let the cost functional of control be

tl
clw) = glx(e )]+ [F 127 (ot) + 0 (we)] ae (2)
o}

where £° (x,t) and h° (u,t) are real-valued, non-negative, convex and
continuously differentiable functions with respect to t, while g is
convex and differentiable. The general problem of optimal control of
bounded phase-coordinate systems is to choose &n admissible control
u(t) < Q on the time interval [to, tl] which steers the system (1) from
its given initial state' x(to) = x_ at time t_, to & point target in G
at time t,, such that the response x(t) € G for all t e[to, tl], and
the cost functional is a minimum.

The general problem described above is difficult to solve. Instead,
solutions of more restricted classes of problems will be attempted. As
a first step, we will seek the method of obtaining analytical expression
of the time optimal controller for autonomous processes. The processes
are assumed normal so that the admissible extremal control is umfque.
Once this is coﬁpleted, optimal control processes with integral quadratic

cost criteria will be investigated.




4.  TECHNICAL APPROACH

4.1 Background Results

The following is an outline of the technical approech of our first attempt
on & time optimal controller for autonomous processes with a bounded phase-~
coordinate. Gemkrelidze (4, 5] end others have given necessary conditions
that extremal controls must satisfy. These necessary conditiong imply that
an extremal control corresponds to a solution of a set of adjoint equations.
The adjoint solution has certein jump discontinuities allowed, and hence
depends on a number of parameters representing:

(a) the magnitudes of the number.of Jumps that eppear in the adjoint
solution, &nd

(b) the time lengths of the arcs of the corresponding trajectory which
lie on 3G, the boundary of the phase-coordinate restraint set G.

The discontinuities are allowed at points where the trajectory (corresponding
to an extremal control) enters upon or exits from an arc on NG.

These are the general results. They do not, however, indicate specifically
at which points the trajectory enters upon the erc, and when the trajectory
must exit from it. This research will attempt to answer these gues-
tions. The following anelysis will lead to & method that determines extremal
controls as explicit time functions. Then these functions can be represented
in terms of adjoint solutions. A sufficiency condition given by Ruesell [12]
shows that the solutions so obtained are optimal controls.

4.2 Analysis

For a linear autonomous process, the calculation of trajectories by the
"backing out of the target" procedure is valid. In so doing, & set of attain-
ability K(t) can be found for every fixed time t. If t is small enough such
that each set of attainability K(t) is within the interior of G, then it is
known that K(t) is compact, convex and continuous in t. Moreover the trans-

versality condition applies at 3K(t), the boundary of K(t); and for each point
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on the boundary, there is & corresponding unique and admissible extremal control.
When t is large, some segments of K(t) may coincide with 3G. Since G is convex
by hypothesis, then K(t) is again convex; and Ressell [12, pp. 22-53] showed
that:
‘ (a) at the boundary of K(t), the transversality condition is still valiad
if the corresponding adjolint system is modified, and,

(b) corresponding to each point on the boundary, there is a unique and
admissible extremal control.

Thus, by (a), for every unit vector T in En there is a state vector x
corresponding to a point on 3K(t) for a fixed t, such that the projection
P of x onto T is a maximum. By (a) and (b), the corresponding unique and
admissible extremal control, which maximizes the projection, steers the linear,
normel, autonomous process from the origin to a furthest point x in a fixed
time t.

This is equivalent to the case that, with the time sense reversed, the
same extremal control will steer the system from x to the origin in s fixed
time t where t is minimal. Russell's sufficlency condition [12] shows that
the unit vector 7 is the adjoint vector at time t, end the extremasl control
s0 obtained is the time optimal control.

Thus, the problem of determiﬁing a time optimal controller is now reduced
to obtaining an admissible extremsl control that maximizes the projection of
a state vector x at a fixed time t (in the sense of "backing out of the target")
onto & unit'véctor. In so doing, an extremal control can be found for every
fixed finite éime t and for every unit vector. .This method of approech makes
it possible to determine the extremsl controls as explicit time functions.
Once this is completed, the state vector x(t) can be computed from the variation
of parameters formula with the corresponding extremal control.

As a last step, take the limit of x(t) as time t appraoches infinity. If
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all the state variebles approach + » as t approaches «, then the controlled
autonomous process is completely controlleble. If, however, some state variables
approach finite limiting values, then these x(t) form an uncontrollsble region.
It is quite naturasl that a linear process is completely controllable if the
phase-coordinate is not bounded; but an uncontrollable region may exist for

the same process 1f the phase-coordinate is bounded.

4.3 Summary of Preliminary Results

, The above method- of approach was applied successfully to "the time optimal
control of an unsteble booster with actuator position and rate limitsﬁ. The
optimal control function and the unstable region were obtained. The results,
when evaluated with numerical data, are in sgreement with those obteined by
Friedland [20] and Toohey [21] who solved the probleﬁvby other methods including
computer simulation. The derivation of the optimal control function and the
unstable region via the method outlined in this report‘is giveﬁ in

the Appendix as an illustrative example.
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5.- PEER OF YUISES WORE

A preliminery study of & harnonic oscillator with bounded amplitude and
bounded rate coﬁtrol is required. This study, although it does not solve the
proposed problem, will give the informstion on the form of the time-optimal
control function for a system having a pair of purely imsginary characteristic
roots. It is anticipated that this problem will be more complicated in com-
perison with the unstable booster problem discussed in the Appendix. Because
of the nature of oscillation, the control varlable will enter upon and exit
from its bound as often as the time duration permits.

The next step will be a study of an underdamped oscilletory plant with
bounded amplitude and rate control. The investigation will yleld the nature
of the time-optimal control function for & process with a pair of complex
conjugate characteristic roots.

At this point, the research can be divided into three parallel peths:

(a) extend fhe study to the same processes but with integral quadratic cost
criteria, (b) independently simulate the same problems on a computer and compare
the data so0 obtained‘against those from analytical results, and (c) study the
same time-optimal control problems analytically except that one of the state
variables be also bounded (so far the bound 1is only appliied to the sugmented
state variable, viz. u = x3). GCenkrelidze's [U4, 5] necessary conditions imply
that the adjoint solution has certain jump discontinuities. However, his
results do not indicate how many discontinuities will occur. In our preliminary
study with only one bounded state variable (see Appendix for the unstable
booster), there 1s at most one discontinuity which can be arranged at either
the beginning or the end of the time intervel. This is also true for an
harmonic oscillator (a brief investigation on this problem has been completed).
It 1s therefore conjectured that the number of jump discontinuities in the

adjoint solution is the same as the number of bounded state variables. This
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conjective remains to be shown in the above study (pert (c)).

Next, the investigation of a bounded phase-coordinate problem having one
resl and & palr of complex conjugete characteristic roots will be started.

It 1s intended to develop an slgorithm for the time-optimel control problem
first, and then anéalgoritﬁm for the problems with integral quadratic cost
criteria. These algorithms will be programmed on a computer, and the results
evaluated.

The simuletion will agein be carried out in the following order: (a)
construct enalog simulation of plant and controllers, (b) develop block
diegrams of controllers suitable for future mechanization, (c) develop simulation,
analog end/or digital, suitable for testing of practical control systems, (d)
compare with the results from enalyticel expressions, and(e) test various
ideas for simplifying and approximeting the controller.

Finally, the same steps of investigation will be applied to the same class
of control problems for linear time-varying processes. If data are available
for practical systems, these systems will first be approximated by third-
order systems, then computed end simulated by the methods developed in this

research. A careful check of these results will determine the relative merit

b
ct
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6. APPENDIX - OPTIMAL CONTROL OF AN UNSTAELE BOOSTER

Friedland [20] and Toohey ([21] studied an optimal autopilot design problem
of an unstable booster with actustor position and rate limits. T%eir simplified
plant transfer function consisted of three poles in the frequency domain: one
at origin and two on the real axis with equel magnitude but opposite signs.

They simplified the problem further by cancelling the pole at origin through
physical design. Essentially, the simplified end normalized unsteble booster
is described by & second order differential system

o

-~ -~

x=Ax+bu(t) (3)
were (2] [2)A-1000 500
The problem is:
(a) to determine the maximum controllsble region (in Ez) in which every point
can be steered to the origin by e scalar control u(t) subject to the constraints
lu(t)] <1 and lu(t)] < D on [0, t,], and
(b) to find a time-optimal control function for each initlal state in the
controllgble region.
Friedland and Toohey solved the problem by other methods including computer
similation. 1In the following, the same problem will be solved by the method
outlined in the preceding section.

Booster Problem as Bounded Phase-coordinate Problem

= u(t), then the augmented system

First, augment the system by defining x3
becomes
x =Ax+Dbv(t) (%)
vhere ' o
r f 1 010] 0!
x=!xl N A=l101],b=0 andv(t) = &t).
xz ;xl " ) | i
LX3. Lu(t) . 000 (13
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This becomes a bounded phase-coordinate problem (in the sense |x3l'= Ju] < 1)
in which the scalar variable v(t) is required, subject to the comstraint
{v(t)| < D on [0, tl], to steer system (4) from an initial state x(0) = %,
to x(t*) = O where t* = min. t, _

Assume that this control process is possible; then proceed by the method
of "backing out of the target x = 0", and write the system (4) with time sense

reversed (by defining =

"t):

i}

D /ar = - A x(1) - b v(r) (5)

with x(0) = 0. By the varietion of parameters formula, the system (5) has a

)
solution r

fr [1 - cosh(t-8)] v(s) dsA1
o
x(1)= j sinh (7-s8) v(s) ds (6)
o
F[T v(s) ds
‘s gy

vhere |v(s)| < D is admissible on [0, t]. The adjoint system for the system

(5) is

W/ar = -(-a)" 4(x) = & y(1)

in which A' = transpose of A. Genkrelidze [4, 5] showed that, in order to

repregsent the extremal v as &8 multiple of the signum of an adjoint solution
for the bounded phase-coordinate control problem, the adjoint system mist be

modified. Thus a "totel adjoint vector" p(t) must satisfy the relation

dp/d‘f -

A p(1), 1if Ix ()] <1
{ ? S (7) ‘

R p(s), if !x3(r)| =1

~ Jo 10

A='1 0 O *
{0 0 O

In so doing, the necessary conditions for v to be extremasl can be expressed

in which

as
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v(t) =D sgnip(r) (-b)]
or -v(7) = D sen(p,(7)] - (8)
where:
(a) p(1) satisfies the system (7),
(6) py(c) = 0if [x ()] =1,

(¢) p(r) is allowed certain jump discontinuities at endpoints of intervals

where |x3(1)[ = 1 (for this problem, p, end p, ere required to be continuous

end Jjumps can occur only in p3 since only x3 is restrained), and
|
|

(a) r+l, if Py > 0

sgn p; = O, ifpy =0 (9)
-l, if p'.) < O-
~

Thus, the solution of the system (7) can be written as

pl(r) = pl(O) cosh 1 + pz(O) sinh 1,

pz(r) = pl(O) sinh T + pz(O) cosh T, (10)
p.(1) = spl(O) cosh T + pz(O) sinh 7 + k, 1if !xB(T)! <1,
3 \o 1 ()l =1,

where the value of constant k in p3(1) depends upon the interval in which
|x3(1)| < 1, and upon pl(O) and p2(0).

The Extremsl Controls

To determine extremal controls as explicit time functions, form the projec-
tion P as defined in the preceding section. Let the unit adjoint vector at time

T be

cos 0 cos @
ﬂ:jsinecosﬂ, -t <6, <, i
\sin 6
then, by equatiéns (6) :nd the definition of P,

P = f g(s; t, 8, #) v(s) ds
o
in which

g(s; 7, 6, @) = cos @ [cos 6-cos 6 cosh(t-8)+sin 6 sinh(t~8)] - sin g, ;

(11)
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and lv(s)| < D 18 admissible on [0, 7]. By the transversality condition at

x(t) on 3K(t), v(s) is extremal on [0,7] if it meximizes P. By equation (8),

the only possible values for v(s) are £ D and zero. The condition |x3l = Jul <1
determines the choice of either $ D or zero .for v(s) for the following reaison.
When !x3| < 1, the system (4) is normal, end hence the value of v can only

be either +D or -D. When |x3| = 1, by equations (8), (9) end (10) the value

of v is zero, which implies that x. must stay on its bound. This conclusion

3
is in sgreement with Chang's statement [22] that if the system is time-optimally
controlled, then either u is extemal or du‘/d‘r is extremsl.
For this particular problem, the function g(s; 1, 6, ), which is given
by equation (11), has a property that
gls; 7, 6, @) = g(s; 1, n+6, x-g);
hence, 1t suffices to consider only half of the range of 9 and helf of range
of &. E‘or the convenience of discussion, choose -x < 6 < O and -x/2 < @ < x/2.
Then P becomes
P =cos ¢ r’ (s; t, 6, &) [-v(s)] ds
) )

where

f(s; 1, 6, ¥) = cos 6 cosh(1-5)~cos 6-s8in 6 sinh(t-s)+tan g.
| (12)
(a) For "/u<p<0, */2<g<™/2, and 0< 5 < T < =, the derivative

df/ds <0 (=0 only wvhen s = 1 and 8 = 0). Hence, in this range of 6, f(s; 1, 6, &)
is monotone decreasing in s. A

(b) For -x <0< /4, ®/2<g<*®/2, and 0< 5 < 1< =, the function f has
maximum value at sm‘= z-tanh™t (ten 6). However, for ten™t (tanh 1) < 6 < '3“/14
vhere tan-l(tanh T )> -%, the value of 8 is negative which is not in the range
of interest 0 < 8 < 7 < =,

Thus, for /2 < @< ™/2 end 0< s < 1< =, f 15 monotone decreasing in s if

-n < tan™t (tanh 1) < 9 < 0; or £ has a maximm at 8, = t-tanh ™t (tan 0) it

-x < 6 < tan"Y(tanh 1) < °31/1+. Furthermore, for any real k, f(sm+k; 1, 6, @) =

f(sm-k; T, 6, ) 1t -n <6< '3"/14»; hence, f is symmetric with respect to s .
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Therefore, for a fixed 1, a fixed 6 end a fixed ¢, £(s; 7, 6, ) can be sketched
on the intervel 0 < s < 7. |

To determine the form of extremal v(s) that maximizes P, the method given
by Schmaedeke and Rassell [23] can be used. For this particular pfoblem, how-
ever, v(s) can be obtained by inspeetion with & geometrical reasoning. Two
typical cases are shown below, one corresponds to f belig monotone decreasing
in s and the other to f having & maxirum at some Sy > 0.

In the case shown in Fig. 1, the ranges are -3“/h <8< 0 and 1/D< 7 5}3/D:

hence, f is monotone decreasing in s. The form of extremsl v(s) is

()_Dforo_<_s<1/n i y
Bt for 1/D< s <t itz >g> ﬁi; (13)
JD for 0 < s < 1/D \
-v(s) ={ 0 for 1/D< s < 1 -1n(a+g) Coir g > > (1)
=D for 7-ln(o+g) < s <t
{ D for 0 < s < t-1n(a+) |
v(8) =1 ) oor rln(ar) <s <t ) TP Z0>05 (15)
or
. )
-v(s>={ pror 0 e (DR, g g oae; (16)
-D for (1-1/D)/2 < s < 7| 3
where
gl =0
g, = ~tan~t {cos 6[cosh(t-1/D)-1] - sin @ sinh(x-1/D)},
953 = -ten™t {cos 6[cosh(t/2 - 1/2D)-1]-sin 6 sinh(t/2 - 1/2D)},
a = (cos 6-tan g)/(cos 6-sin 6), and
B =,/g§A- (cos 6 + sin e)/(éos 5~:"§1£w57

By an inspection of the sketches in Fig. 1 with the basic requirement in mind
that either |v(s)| = D or |u(s)| = 1 on the entire intervel 0 < s < 7, it is
easy to show that any devietion from of v(s) given above would decrease the

value of f(s; 7, 6, @) [-v(s)] and thereby would decrease P.
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For the case shown in Fig. 2, the ranges are
~x < tan" (tanh 5/2D) < ¢ < tan">(tanh 3/D) < ~S*/k and
tanh-l(tan ) +1/2D< 1t < & tanh-l(tan 8) - 7/D; hence f has a maximum at

8, =T - tanh-l(tan 8). The form of extremal v(s) is

-Dfor05s<(28m-l/D)/3 ) ¢

—

-v(s) = \ D for (2 s_-1/D)/3<s< (k4 5, + 1/D)/3 if »/2 > g > gy

I

m
L0 for (ks
m

+

1/D)/3<s <
or

(-D for 0< s < (28 -1/D)/3 )
1/D)/3 < s < (& s +1/D)/3 -

-v(s) = if g1>g>¢h;
-t o for (4s +1/D)/3< s <7 - ln(x-p)

o
4
H
~~
[
]
'

+

-D for v - In(a~B) < s <7
or
( -D for 0 < s < (2 s_-1/D)/3 )
D for (2 s -1/D)/3<s< (ks_+1/D)/3 |
v(s) = - n - m Parg >0 > /2
. 0 for (4 sm+l/D)/3 < s < 1 - 1n(a-p)
. -Dfor 7 - In(a-B) < s < ‘
where 53& = -tan'l{cos 6[cosh 2/D - 1] - sin 6 sinh 2/D}, and all other paremeters
were defined previously. By an inspection of Fig. 2 with the same argument given
in the previous case, the extremal v(s) must have the present form.
This procedure was carried out for all the possible cases. It was found
that the extremel v(s) reaches zero and takes off from zero as many as four
times. Denote the time s at which such events occur by Ty, 1= 1,...,4, and
let 7 =0 and T =T Supposing the velues of x3(s) = u(s) are such that
- Ju(s)]| <1, 1<

v lu(s)]

i_<_s<'r ,» 1 =0,1,2;

2 21+l

1, if = 8 <7 =0,1 .

2;j+1s 23+2’? J

Then

d¢3/ds for 1,3 <s<T i=0,1,2;

d
ﬁ( P3/ds 2{+1?

L p3(s) =0 for 1,,,.,§8 < 7T

23’1\ tj = O)l hd

2j+2?



2 34Nn9l4

(¢ 92 !sfd

=23~

<

(Pr0'Lts)y

(P 8'1's)§

N\.FlAﬁ.Nvﬂ v;ﬁAﬁA_ﬁ




=2lje

It follows that choosing p3(s) to be continuous et T (1=0,1,2) requires

2i+1

p3(121+1) = 0, and hence

p3(s) = $3(s) - *3(121+l) for 1,, £ s < Toy412 10,1,2.

With p3(s) 80 defined, the jump conditions have to be satisfied st 7,,, 1=0,1,2.

Since N is the unit adjoint vector at dK(t), therefore p3(1) = 13(1) = ﬂ3 = sin g.
Thus
mxe[coeh(T-s)—cosh(r-Tl)] - sin 9[sinh(t=-8) - sinh(r-Tl)], if0<s <1,
p.(8;7, 8 2) ’ ’ HnEet Ty
‘1‘23;73" fﬁ6[cosh(1-s)-cosh(1-13)] - 8in §[sinh(t-~s) - sinh(r-r3)], if 1, <8< T3
e s if 13 $s<T,
kwa[cosh(r-s)-l]-sin 6 sinh(t-s)+tan g+b(tan g_- taw #), 1if T, <8< T
where
{0, 12 |x (7)) = lu(7)] <1
5 = 3
1, 1if lx3(1)] = |lu(1)] = 1.

Using the expression for p3(s; T, 8, g), 1t has at most one jump discontinuity
at 8 = v (equivalently et 3K(t)), and this happens only when |x3(r)1 = |u(s)] = 1.
Furthermore, the explicit form of extremal v(s) can be expressed as

-v(s) = D sgn[p,(s; 7, 6, 9)]

fo.(s; ©, 6, 2)/ 1
=D sgnL 3 [cos g |

since cos @ is positive on -“/2 < g< x/2. Finally, by Russell's sufficiency
condition [12], the extremel v(s) is elso the time-optimal v(s).
The function p3(s; 1, 6, ¥) for the two typical cases discussed previously

are also sketched in Figs. 1 and 2. The fbrmulaé for parameters 1., 1 =1,...,4, 5,

i,
and g are obtained for all possible cases in the ranges -x < 6 < O, e < g< 2
and 0 < t < », The results are listed in Tables I to VI.

Time-optimal Controls for the Booster

The state vector x(t) can be readily computed from equations (6). Take &

typical case as an example:
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‘3“/u <8<0, 1/D<7<3/D g,<8<g (see Fig. 1). For this case, the

extremal v(s) is given in equation (14), hence by intergration over (0, 7],

x (1) =D sinh(1/D-1) + D sinh t-1 + D In(a+p) - [a+p-1/(a+8)] D/2
x2(1) = D cosh(1-1/D) - D cosh 1-D + [a+p - 1/(a+B)] D/2
x3(1') =1 - D ln{a+p).
Let o+p = eX/D go that x4(7) = u(x) = 0, then
{xl('r) =D [sinh (1/D - 1) + sinh 1t - sinh 1/D]
xz('r) = D [cosh (7-1/D) - cosh v - 1 + sinh 1/D]
for 1/D< 1t < 3/D. A further choice of T = 2.5/D reduces the above to
‘vxl(z.s/n) = D [-sinh(1.5/D) + sinh(2.5/D) - sinh(1/D)]
< x,(2.5/D) = D [cosh(1.5/D) - cosh(2.5/D) -1 + sinh(1/D)]
Lx3(2.5/n) = 0.

Using the results so obtained to solve the originel booster problem stated
in equation (3), reverse the time sense once again. Thus the extremal v(s)
now starts from s = 1 and backs up to s = O, Since t = ~1, it follows that
equation (14) is now replaced by
Dfort>s>t-1/D
-v(s) =5 O for t - 1/D > s > In(a+B)
-D for 1n(a+g) > s > 0.
Since dx3/dt = v(t) in equation (4) replaces dx3/d1 = =v(t) in equation (5),
hence x3 = u (shown in Flg. 1) now reverses its sign. Thus, the sbove example
(now t = 2.5/D instead) can be interpreted as follows: The control
( Ds, 1£2.5/D > 8 > 1.5/D
u(s) = i -1, 1£ 1.5/D>s > 1/D
‘;\-Ds, 1£1/D>8>0

will steer the original booster control system (3) from the initiel state

L

S‘ x._L(O) D(-sinh(1.5/D) + sinh(2.5/D) - sinh(1/D)]

D{cosh (1.5/D) - cosh{2.5/D) -~ 1 + sinh(1/D)]

x,(0)

with u(0) = O to the origin with a minimum time t* = 2.5/D and u(2.5/D) = 0.



~26=

This example also illustrates the fact that the perameters 6 and @ introduced
in the adjoint vector T serve as en aid to derive the extremsl v(s) only, they
diseppear in the final solution of the time-optimal control problem. '

Maximum Controllable Region

The maximum controllable region is determined by exsmining the velues
of x(1) as T = ». Among the total of twenty different cases for large T in
Tebles I - VI, the boundary of the region for u = 1 can be determined from the
cases of (a) "/2 > g > g, 3/D< 7 < =in Teble I, and (b) 2> g > 2,
3/D< 1 < » in Table VI as follows:

(a) By equations (6), this case yilelds

 x,(7) =D sinh(1/D - 7) + Dsinh 7 - 1
‘ Jga(r) = D cosh(t - 1/D) - D cosh T
\ x3('r) =1

i
Thus ——~———= - -] as T = » wvhich gives a equation

*2
xl+x2=-l for u

(b) This case yields

i

1. (17)

Dsinh t + 1 + D sinh (2/D) -2

{ xl('r) =-D sinh(1/D - <)

D cosh(2/D)

%,(7) = -D cosh {7-1/D) + Dcosh v + D

,
L
A
S
L
]
o
+
o
]
| ol

x, +1 - D sinh (2/D)
%, - D+ D cosh (2/D)

-1l as Tt +®, or

n

X +%, =-1+D [1 - exp(-2/D)] for u =1 . (18)
The boundary of the region for u = -1 can be obtained from other cases,l
such as the case of g, > § > - %/2, 3/D< 1t < = in Teble I. However, since
g(s; 7,6,8) = g(s; 1, n+6, n-g), (19)
known relations will hold if all the signs of x;, X, and u( =X, ) are changed
similtaneously. Therefore, corresponding to equations (17) and (18), the boundary

for u = -1 is given by
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n
'
=

-

(20)
(21)

-xl-xa=-l ' for u
{ Yy =X, -1+ D[I - exp(-2/D)] for u

The boundary of the region for -1 < u < 1 can be found from the case

n
]
=

of #y > @ > @, 3/D< 1< in Table I, vhich ylelds

(1) = Dsinh (1/D - 1) + D sinh 1+D[1/(a+g) - (a+p)]/2 + D ln(a+p) - x5(7)
} x,(1) = D cosh (t - 1/D) - D sinh t-D + D[1/(a+p) - (a+p)]/2
. %3(r) =1 - D In(a+p) .
Since u = % and a+f = exp[(1-u)/D], hence the limit as 1 —* & yields
X+ %, =-u- D{l-exp [-(1-u)/D]} for u = 1 -D 1ln(a+p) (22)

which reduces to equation (17) if u = 1, and to (21) if u = -1. By the property
of equation (19) and the same argument, the other boundary equation for -1 Su<l
can be deduced from (22) eas

X, - X, =u - D{1 - exp[-(1+u)/D]} for -u =1 - D In{a+g) . (23)
Equetion (23) reduces to (18) 1f u = 1, and to (20) is u = -1. Consequently
equations (22) and (23) determines the maximum controllable region (Fig. 3) for
-l <u<l. Flgure I shows the regions for 1/D = 0.709, which agree with those
given in Friedland's paper [20] when & scalar factor of 0.709 for Xy and X,

axes are considered.
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PART C

STOCHASTIC OPTIMAL CONTROL

1. INTRODUCTION

Stochastic control problems are concerned with the con-
trol of dynamical systems which are random in some sense., A
programmed control of antenna pointihg‘system for the space-
craft is one of many practical applications. As an axample,
a programmed antenna requires excessive preflight calibration
to permit reduction of fixed errors and compensation of vari-
able errors within the requirements of a prescribed geometry
of the antenna. It is known that the relative accuracy of this
approach, even with comprehensive compensation equipment, is
questionable. A possible way of improving the accuracy is to
formulate the problem as a stochastic\Optimal contrxol problem
such that the spacecraft and its antenna pointing system are
acted upon by random perturbations. The problem then involves
- the determination of a control law which maximizes the probability
of the antenna's pointing at the desired direction within a pre-
scribed allowable tolerance.

In the following sections, a discussion on a method of

stochastic optimal control is presented. Section 2 gives a
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brief summary of the work done to date in this area. Section
3 presents the formulation of the stochastic problem that is
under investigation. The method of solving the problem is dis-
cussed in Section 4. Because of the complexity of the stochastic
problem, the notation for the mathematical description is un-
avoidably tedious. Appendix I is written for the purpose of
clarifying the definition of the notation which will be used
repeatedly in the discussion of the problem. Appendix II ex-
plains the difficulties of the mathematical treatment of
stochastic differential equations, and the equivalence of
formulation between stochastic differential equations and
integral equations. The stochastic pursuit problem solved by
Mishchenko and Pontryagin rii] i§ summarized in Appendix IIIX
in which the notation is carefully selected to agree with the
definitions given in Appendix I. Their fesults constitute a
part of the solution to the stbchastic control problem. Appendix
. IV discusses the computation of the transition density of the
stochastic contrxol process.

2. BRIEF REVIEW OF STOCHASTIC CONTROL PROBLEMS

A great deal of the work done to date in the field of
stochastic optimal control has been an attempt to develope
the subject along lines analagous to the deterministic theory

by dealing with expectations of certain random variables, e.g.
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integral performance indices. Kalman [11 for example, solves
the following problem. Let a state vector x of dimension m be

defined by
- = F(t) x + G(t) w(t) (2.1)

where F(t) is an m by m matrix whose elements are continuous
functions of t,
w(t) is a random vector of dimension L s m
G(t) is an m by 4 matrix whose elements are continuous
functions of t.
Let a vector z of dimension k € m be defined by
z = H(t) x + v(t) (2.2)
where H(t) is a k by m matrix whose elements are continuous
in t,
v(t) is a random vector of dimension k.
Furthermore, w‘and v are sample fhnctions of independent random

processes with zero mean and covariance matrices of the form

covlw(t), w(T)] = Q(t) 6(t-7) (2.3)

covlv(t), v(1)] = R(t) 6(t-T) (2.4)

where Q is a time-varying, symmetric, nonnegative definite,
continuously differentiable, 4 by { matrix,
R is a time-varying, symmetric, positive definite, con-

tinuously differentiable, k by k matrix.
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Then Kalman [1] finds an estimate X(t, |t) of x(t,) of the form

t
Mt lt) = [A(ta, 7) z(1) ar,  (2.5)
to

where A is an m by k continuously differentiable matrix, which

minimizes

Ba(r), t,s7st (Bx, x(ty) - x(t,|t) ) (2.6)

where denotes expectation conditioned on z(T),

Ez(T), to £TSt
B is a specified m by m constant matrix, and {,) denotes

inner product.

Kushner [2] considers a system defined by

-— = f(x, u) + § (2.7)

where f is linear in x and u
X is an m~ dimensional vector.
u is an 4sm dimensional control
é.is an m-~ dimensional random vector.

with a cost criterion

T ' :
E J g(x, u) dt (2.8)
0
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where g is quadratic in x and u, and T is fixed. He gives

a method of correction to optimal deterministic control when

the effects of & are small. He extends this work [3], [4],

{5], [6] to develop a stochastic maximum principle, complete

with adjoint equations and a stochastic version of the Hamiltonian,
for the minimization of

E {c, x(T)) (2.9)

subject to dt = f(x, u) dt + o(x, u) dz (2.10)

where ¢ and x are m—- dimensional vectors

u is an 4 < m dimensional control

og(x, u) is a weighting matrix

2z is a sample vector of a random process.
Later, Kushner {7] solves essentially the same problem by a
technique involving a stochastic vefsion of Lyapunov functions.
In this paper, z is assumed to be a sample function of a
Wiener process. 1In oxrder for (2.10) to be meaningful, it is

necessary to interpret it according to Ito (see [8], chapter

vi, §3).

The theory of stochastic stability referred to in [7] is
developed by Wonham [9] and Kushner [10). Various types of
stability were also defined and then discussed.

In most cases, the expectation of a random variable is
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not the most appealing performance index. As a matter of
fact, such an index is used hainly for the mathematical con-
venience. It is true that even if the distribution of a
random variable is not known, its variance places a bound
on the probability of its displacement from its mean. This
is, however, a rather crude bound. Only in special cases,
notably the Gaussian case, does a knowledge of expectations
give very precise information about error probabilities.

Pontryagin and Mischenko [11] have solved an entirely
different problem. They considered a controlled point in
the state space in pursuit of another point. The state vari-
ables of the pursued point are sample functions of a Markov
process. The performance index is the probability of “capture"
of the pursued point by the controlled point during a
specified time interval. The pursued point is considered
"captured" if the controllea point is brought within some
specified spherical neighborhood of it.

It might be argued that this approach lacks appeal
on at least two grounds:

1. How often is a control system asked to guide an object

toward another object whose motion is Markov?
2. The solution presented by Pontryagin and Mischenko
assume only a knowledge of the initial position of

the pursued object. 1Is the assumption realistic?
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Granting the validity of these points, the work done by
Pontryagin is applicable, after some manipulation and addi-
tional development, to a more appealing problem. This problem
is the subject of this research. For the purpose of convenient
reference, the pursuit problem and its solution are described

in more detail in Appendix III.
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3. PROBLEM STATEMENT

The problem to.be considered is that of bringing the
state of a system under the influence of additive noise
from an initial state to some spherical neighbbrhood of
the state space origin within a time interval with a
maximum probability. The formulation of the problem is
based on the following reasons:

1. It is a logical modification of a well-known class of
deterministic optimal control problems,

2. A broad class of engineering systems are subject to
additive noise, and

3. The performance index of maximum probability is highly
appealing.

The investigation will be aimed at the linear case.
To be more precise, it is desired to determine‘the vector u

which maximizes

Prob(|]| x (r) || £ ¢ ) for some O < 1 s‘T (3.1)
subject to
dX _ aA(t) x + B(t) u + C(t) n; x(0) = x, (3.2)

dt
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where x is an m dimensional vector,
A is an m by m matrix,
u is an ¢ < m dimensional vector,
B is an m by 4 matrix,
.
n is a k £ m dimensional sample vector of a random
process,
C is an m by k matrix,
¢, T, and x, are given as part of the problem.

The determination of the restrictions on A, B, C, u,

and n are part of the research problem.

4., TECHNICAL APPROACH

Method of Approach

The problem described in the preceding section will be
investigated in the following manner:
(A) Compute the transition densities of a state vector

defined by

dz
E€'= ~A{t)z - C(t)n
(4.1)

2(0) = O
(B) Compute u to maximize

prob (|| ¥ (1) -2z (1) || < €]
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subject to

g{- = A(t)y + B(t)u
(4.2)

. y(0) = x,

The method of approach is motivated by the advantage
of the superposition property of linear systems. A proper
translation of the coordinate-system reduces the present
problem to Mishchenko-Pontryagin's pursuit problem which is
summarized in Appendix IIXI. Thus, if the statistics of the
z-process is in agreement with the hypotheses for the pur-
suit problem, then the known results can be used to complete
the solution. The work to date has been concerned with
establishing the conditions on the n-process which make the
z-process Markov, and the computation of the z-process
transition densities from the n-process statistics.

Preliminary Resulits

A preliminary result (see Appendix II) is that if‘the
z-process is Markov, then it is also a process with inde-
pendent increments, and the n-process is white noise.

These properties (see [8],[12]) require that (4.1) must be
written as a stochastic equation. Appendix IV shows how it
may be possible to estimate the transition densities of =z

in terms of the statistics of n.
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Plan of Future Work

The investigation will be divided roughly into two

categories, viz., theoretical and computational.

The ,theoretical work includes the following items:
The amplification of the work in Appendices II and IV
into rigorous arguments. In particular, the assumption

of the convergence of sequence {pIi } discussed in

&n

Appendix IV must be justified.

An error estimate for P;i ~ P will be developed.

En &N

The conditions on the noise that guarantee z-process
satisfying the hypotheses of the pursuit problem

[see Appendix III] will be determined.

The computational work includes:
The development of a computer program for the computation
of

a) z transition densities from noise densities;

b) optimal controls from z transition densities;

c) probability of "capture" under optimal control.
The use of this algorithm to investigate the relation-
ships among

a) noise statistics,

b) optimal control signal,
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c) system parameters,
d) optimal performance, and
e) initial conditions, time interval, and target

neighborhood size.
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APPENDIX I

The purpose of this appendix is to define notation.

Let ({1, 8, u) be a probability space. Let Y,, Yp,

be random vectors from Q to Em. That is,

Tt ]
i

Y, = Y (X.1)
i i

‘m
| ¥4 |

and for every w ¢ {}, there is a y ¢ E™ such that

— 1 —_

-
1
y Y;(w)
y = y? =Y, (@) = : (1.2)
‘m m
L y . _Yi (w).‘

Furthermore, for every Borel set B in Em,
Yz‘ (B) ¢ 8 (.3)

The distribution function PY (y), from E" to the real
i

line, is defined as follows: Let A ¢ ® be the set of

W ¢ 3 for which

Yi w) <y (x.4)
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or, in component-wise notation,

J

Y,?_("’) <y, 3=1, -+, n (1.5)

then

PYi(y) =u (A) (1.6)

The joint distribution function

Py Y. ... (Yir ¥541 )

’...'y.
i i+l 'Yi+k

i+k
m m m

from the E- X E x *°° x E (k + 1 factors) product space

to the real line is defined as follows. Let Ai ¢ 8 be the

set of w ¢ (} for which

. (W) <y, .7
Yl( ) Y, (X.7)
itk
Then P (VervevesV: o) =& [ n A.'_] (1.8)
- > e e 0 +k . .
Ygo¥gppooeeo¥Yiy % . j=i I
The definition of the conditional distribution function

P (Y). OYSO---Yklyk_*_lo-o"iyk_'_b) (1-9)

Yl'Yz'f..'Ylek+l'...’ k+L

is defined as follows. Let Ai be the w set for which

Yi(w) < Y, i=1, ..., k (x.10)
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I.et Bi be a Borel set in Em. Let

= y=-1 i
Ci Yk+i(Bi) 1 + l’ o0 o L (I.ll)
Let L :
c=nN Ci (r.12)
i=1

Let B be the set in E" x E™x ... X EN (4 factor),
4
B=1 B (.13)

Then the function of (I.9) is defined as that function

satisfying
[ e ( \ )
yx,oo.)y y+ 'ooo'yk+
B Yl'...Ylek+1'...'Yk+L k k l L
ap ) = u (ANC) ¥ B (1.14)

(Y :---:Y
Yk+1,...,Yb+£ k+1 k+4

aw

Finally, the conditional density

le 'Ya' - ..,Yk‘Yk+l' ® o0 'Yk+L(Y1 lYQ g o0 lyk‘yk+l' - ..‘yk-‘-{,)

(X.15)
is defined as
ak

ki
{aw1 aw200.awk Yl’oo-Yk|Yk+ll"‘l k+&

Wy oeeeiW |y hoee. ’yk+L]}

evaluated at w, =vy.,
i i

i=1,...,kx (I.16)
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APPENDIX II

This appendix discusses the circumstances-under which
the process defined by (II.3) is Markov. Ihe fact that the
point of definition is (II.3) rather (II.l; has much
significance. As a matter of fact z does not even exist.
This follows from the fact that the z process, as will be
shown, is a process with independent increments (8], which
creates a mathematical difficulty for (II.7). This difficulty,
however, can be avoided by utilizing the concept of stochastic
differential equations [87, [12]. The integral of (II.3)
exists in a very slightly modified form as a stochastic
integral [8]. This form of integration is compatible with

the arguments contained in the remainder of the Appendix.

Consider a random vector z(t) defined by
z(t) = A(t) z(t) + C(t) n(t), z(0) = O (11.1)

where n(t) is also a random vector with less than or equal
to the number of elements of Z{t),
A(t) and C(t) are matrices of suitable dimension

Let ¢(t,r) satisfy
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ST () =A®) & (), taT (11.2)

® (r,7) = identy matrix with same
rank as A,

Then

z(t) = J‘ @ (t,7) C(r) n(r) ar, t = O (II.3)
(o]

provided the integral exists. The question to be answered is:
Supposing the z process is Markov. What does this say about
the n process?

In order to facilitate the discussion, some notation

will be introduced first. Let

t.
J
Iorg = j ¢ (tj.r) C(r) n(r) dr (11.4)
0
tx
1. =] @@.mn cm oam ar (11.5)
J k tj

In the subscripting of t, the convention

>k >02> tj >t >0 (I1.6)

(e.g. tg > ts >tz > t, > 0)
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will always be followed. An obvious identity which will be

used repeatedly (tacitly) is

¥t .
3 > tk > tL' I (1x.7)

=1 + I .
tLtj t{.tk tktj

If the z process is Markovian, it is necessary that

P (23 |22,2,) =p : (zs |23) . (11.8)
IOt,'IOt,'IOt1 IOts‘IOtg
It will now be shown that equation (II.8) implies
PI 1 I (2522 :20-2,.2,) =

Py (Zs’za)PI (Za-zl)pI (z,) .

This will be done in two steps. A relevant lemma will be

discussed first.

Lemna 1f pIOt3|IOt3'IOt1(Z"ZQ'ZI) ) pIOt,‘IOtg‘zalza)‘
then Py T (23-25|23) = Pr (25 ~235)
tats 'Oty tata
Proof Note that
pIOt,‘IOtz(zslza) ) pItat,‘IOta(za-zzlza) -2
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P (Zs‘zzozx) =Pp (23‘22‘23‘21021)
IOta‘IOta'IOt1 Itat,‘Itlt,,IOt1
(Ix.10)
the hypothesis, then is
p (za-23 |22) = p (23 ~23 |23-2,,2,) (IX.11)
Itats‘IOtg Itatsiltlta'IOtI

The only quantity upon which both sides of (II.1ll) are

dependent is 2z3-z;. Therefore,

Py 1 I (23-22 [23-2;,2,) = g(23-23) (I1.12)

Next, note that

p (23 =-2z3) = f dy, Jdva Py (23 =23 lvy, va2)

I I
It t3t3| tita’ TOt,
Py 1 (vy, va) (1r.13)
tat.’ TOt, :
or, from (I1.12),
Py (z3~2z3) = I dvy I dva g(zs-23) plvy, va)
tats
or,
P, (23 ~2z3) = g(z23-23) (11.14)

tats
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From (II.11), (II.12), and (II.1l4)

PI I (ZS ~2Z3 ‘ZQ):’ pI (Zs —Za) (II.lS)
tgta Ota t3 t3

Theorem If p(zalz3, 2,) = p(zs|23).

IOt3‘IOtg' IOt1 I0t3|10ta

then p(zs~23, 23-2y, Z,)= p(z,-za) p(zg-2,) p(zy)

I . X ¢« I 1
tats’ Ttyite’ TOt, Ttats  Tt,ts 1ot
Proof By the Lemma,
p(za-23) = P(23]z3, 2) (I1.16)
Itgt3 IOta‘IOtz‘ IOt1
Now
pl(za-22, 2z3-2y, 2y)
Itgta' It,ta' IOt1
Zs | Z z = II.17
pé 3||;' 1)I p(za-2,, 2,) ( )
0 ’

Also from the Lemma,

p(za-2,, 2,) = p(2a3-2,) p(z,),

(Ir.18)
Itltg' IOt1 It,t2 IOt1
hence (I1.16), (II.17), and (II1.18) yield
p(za-za, 23-2y, 21) = P(23-23) p(23-2,) p(z,) 0.E.D.

I I I I ot,

1
tatas’ Tt ta’ TOt, tats t,ta
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This established the fact that any three successive in-
crements are indepenéent. A similar handling for m successive
increments yields the same result. The z process, then,6is one

with independent increments.

Next, apply the law of the mean to I and I
t.t. t. t.
J j+1 j+2, Jj+3

Itjtj+l = °(tj+1' £) c(¢§) n(ﬁ)(tj+l - tj). for some §, tj < £ < tj+l

I

tj+2tj+3 = »(t , v) C(v) n(u)(tj+ -t ), for some

j+3 3 j+2

. < <
Yoty TV S,

Since the z process is one with independent increments,

It & and I and independent for every choice of
j i+l j+2 3+3
< < < < . i
0 tj' tj+l tj+2 tj+3 Then n(€§) is dependent of n(v)

for every 0 < §{ < y. This means the n process being "white."
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APPENDIX III

The pursuit problem [l11] can be stated as follows.

Let

X be the m- dimensional state vector of a system defined by

where u is the control vector.

Let z be the state vector of a randomly moving point.

(IX1.1)

Given

that z is a sample function of a Markov process with tran-

p(o, Nne T, L) = p(C|T’)
z(7) |z (o)

where the right-hand side is as defined in Appendix I.

Further conditions imposed on the process are:

8§ >0, lim_l__ plc -&, n, 0, {) AL = 0O
Ao-0 & T |T-n| 25

(111.2)

(I11.3)

3°  p(o, n, 7, ) exists and is continuous for every (III.4)

anian

J g, 1. T, > O, C.

i=1l, 2, ..., m.,

.1
¥6 >0, lim __ Ici - ni) ploc ~ &, 7., O,
Q0% gl a s

i=ll 2, » e 0y me.

§) di = bi(c. 7m (III.5)
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¥6 >0, lim _1 I(Ci -n) & - n)ple -4, 9 0, L) & =a, . (s, 7
a0+0 & " |L=n) 28 ) J ij
i, 3 =1, ..., m. (I1II.6)
z(0) = z, is known (I1I1.7)
aij(c, n ., bi(o, n) are continuous for ¢ > 0 (I11.8)
The eigenvalues of [aij] are positive and bounded, (I11.9)
and
- |nl
b, (o, 7 = 0(e' ") (111.10)
The problem is to find u that maximizes the probability
that

| | z(r) - x(r) | | < ¢ (II1.11)

for a given €70 and for some T¢{O, T] where T is given.

The pfoblem is solved as follows. The functional ¢u(o, Yy, T)
is defined as the probability that the randomly moving point
-is captured between times ¢ and T given that z(g) = y, and
that the control function is u. If the functional *u were
available, it would be straightforward to apply the maximum
principle, and thus solve the problem. The following is an
outline of Pontryagin's approximation to &u(c, Y, T).

The first step is to show that wu(c, y, T) is a solution to
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z Z =0 (111.12)
13 iy ay i By

subject to the boundary conditions
&(TI Y. T) =0

(e, y, 7) = 1 (III1.13)

| So
where So = surface defined by | | x(o) - z(0) | | = ¢
A solution is then obtained in the form

P(0, 24, T) = e““zr(o, 26, T) + o(en'z) (I11.14)

where m is the dimension of the state space, and ', for the

case where aij and bi are independent of ¢ or y, is given by

I'(0, 25, T) =Ts(0, 2o, T) + I, (0, 2,, T) (II1.15)

LR W
wiLEXS

Y (I11.16)
-2)/2
[yxo) *Tay Dy-x,) 177

L,(s, y, 1) =

/_x oo {J (n-y+x,) *Ta;.] (y-X+xo)}'

- [ an a(1-5)
L2 (r-5) T2 [,, la, ; 7)](m-2)/2
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. T
L, z,, ™) = f ds f pz(O, Za, S, Y)
0

jul
Z{bi - fi[x(s), u(s) ]}ggz(s, vy, T) dy

i=1

Ai are the eigenvalues of [aij]

ISUO(E)dS

] n@

S rm-z(n)ds

(4

ve () = eigenfunction satisfying

cos B
Q8

m-1
T n)

[ |
vin) = J 3; vin ) as

4]
il

oy 2 i, 2
PSRRI

a continuous closed surface defined by

(I11.17)

(I11.18)

(I11.19)

(I11.20)

(II1.22)

© = angle between the radius vector p from 7 to 7
1

and the normal to S at 75 .
1

(I11.23)

The case for aij and bi which are dependent upon ¢ and

y is also solved, with results in much the same form, but

slightly more complicated.



APPENDIX IV

This appendix discusses the computation of the tran-

H
sition densities of a process defined by a stochastic dif-
ferential equation (IV.l). It is interpreted that the
integrals of the two members of (IV.l) are equal. It turns

out [8] that, in the usual stieltjes sense, the integral
Jete) an,

where C(t) is an m by 4 continuous martix,
n is a sample vector (with dimension 1 < m) of a

random proccess with independent and orthogonal

increments.
does not exist (with probability 1) because the sample

functions of processes with independent increments are of

unbounded variation with probability 1. This integral can

be redefined as a stochastic integral (8] so that it does

exist. Under this definition, the limit of the sequence of

Stieltjes sums exists in an {.i.m. sense.

Consider the stochastic differential equation

dz = A(t) z dt + C(t) dn (Iv.l)

z(o) = O
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where z is an m~ dimensional vector,
A(t) is %n m by m continuous matrix,
C(t) and n are defined previously.

The solution is known as ([8], [121])
t
z(t) = [ ®t, T) c(r) an(7) (1v.2)
o
- where $(t, T) is the m by m continuous matrix satisfying

S s, 1)

at A(t) &(t, 1), (Iv.3)

o(r, T) identity matrix

11

and the integral in (IV.2) is a stochastic integral.

To facilitate the discussion let

n
1. = j &(7n, T) C(T) dn(T) (Iv.4)
én £ .
and
;  i-1
Ign =k§o¢(n, T.) ¢(1) [n(rk+l) - n(rk)]. (Iv.5)
where
T. =nand T, = §,

be random variables.

The transition density



Pz(rs) | z(r,) 121) = pITlTa i1, Tl(z’ -z |z)

where the p's are defined in Appendix I.

The sequence {Izn} converges to Iﬁn

in an 4.i.m. sense as described by Doob [8]. A question

arises as to the conditions upon which the convergence of

P, ™ P in a suitable sense as i - =, Once the convergence
I
&n i

is established, then, (IV.6) implies that the z- process
transition densities can be approximated by the conditional
densities pIi IIi . The investigation of the conver-
TyTa O, T

gence problem will be deferred for the future study. The
computation of the conditional densities, however, will be
discussed in the following.

In order to facilitate the discussion, the problem
will be restated in the following notation. Let qu be a

random vector of dimension m defined by

Y = (T Tk) C(Tk)[n(rk+

kq q, ) = n(7.)] (1Iv.7)

1

and Sqr be a random vector defined as

r

S =2 Y (1v.8)
qr k=q kq

To express the conditional density

(1v.6)
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p (s__| )

| Sar'®0, q-1

Sqr So; a-1

in terms of n statistics, the following two steps are re-
quired:

(1) The qu statistics will be written in terms of n

statistics, and
(2) the desired S distributions will be written in terms
of Y statistics.
kg
For the first of these two steps, consider the dimen-

sion of the elements of (IV.7):

Y,  is an m- dimensional vector,
4

1=
N

n(T ) - n(Tk) is an { £ m dimensional vector,

k+1

. L . . o
Q(Tq' Tk) C(Tk) is an m by matrix, and is as

sumed to have rank {.

To facilitate the discussion, let

An = ‘ ‘ - ‘ -
An n‘1k+1, n,rk) (IV.9)

Dqk = @(quk) c(rk) (Iv.10)

Also, superscripts will be used to denote vector elements,

e.g. the igg element of Ank is Ani. Thus (IV.7) becomes

qu = Dqk ‘% (Iv.11)
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From the dimensional considerations stated earlier,

(IV.1ll) represents a mapping of EL into a subspace, V¥, of

E'. The next step is to construct a suitable "coordinate"

eeos V be an orthonormal

system as follows. Let v tkq

1kq'’

cses V be an ortho-

basis for %. Let v s ceesV mkq

1kq kq'’

normal basis for Em. Let vaq be the m x 4 matrix whose

ceer V ., and let V

columns are v tkq mkq

1xq’ be the m by m

matrix whose columns are vlkq' oo vmkq' For every qu,

there is a unigue m- dimensional vector & such that

Y =V o : (Iv.12)
kg mkq qu
this is true because the columns of mGq form a basis for
Em. Moreover, since the first 4 columns of mGq form a
basis for ¥, then
i .
UY =0, 1i=4+1, ;;;, m, (IV.13)
kg
if qutw. Thus quew is equivalent to
-1 i .
<mGq qu> -0, i=2+1, ..., m (1V.14)

From (IV.1ll),

T 1T
= iv.1
any <V tkq ° qk) V ika kg ( 5)

where T denotes transpose. From (IV.14) and (IV.15),
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(Iv.1ls6)
i

- T -1yT -1 .
kaq(y) = pAnk[(Vaquqk) Vquy] 6[(vmqukq) ,-1 = L+ 1, .... m]

where § is the Dirac delta. This completes the first of the
two steps.

For the computation of Pg , it is noted that

qr‘SO, a-1
the conditioning variable is a linear combination of those an's

which do not appear in Sqr' Since the an's are independent,

hence
P (s__|s , =p. (s_)) (1v.17)
Squso,q-l qr'~0, g-1 Sqr qar
From (IV.17) and (1v.8),
p (s__ls, __y)_
squso' q-1 IF 0, g-1'=
Idsq, r-1Ps Y (sq, r-l‘sqr - sq, r—l) (Iv.18)

d, r—ll rq
Since the 4n's are independent,

P (s , S - s ) =
- -
s ) 'Y g, r-1’ “agr q, r-1

(s, -1'Py (sqr - 8, 1) (1v.19)

P
Sq, r-1 rq

Thus (IV.18) becomes




-  —
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)

Ps | (sqrl®0, g-1) -

qr SO,‘ q-l

(

d |
j 84, r-1Py (5qr ~ 3q, c-1'Pg Sq, r-1  (1v.20)

q q, r-1

By applying the same procedure repeatedly, one obtains

P (s ls, __ ;) =
Squso' g1 & 0, g~1

Ids P (s - s )Ids p
q, r-1 Yrq qr q, r-1 q, r=2 Yr—l, q

- ds P (S ) (IV.Zl)
j q9g Yq‘ q qq

which gives the conditional density in terms of qu statistics.
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